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ABSTRACT: A finite element model has been developed to reproduce shear failure in reinforced concrete
structures that may be characterized as follows: (1) the reinforcing steel and concrete are coupled by the
assumption of full bond in R/C components (a bilinear stress-strain law describes the uniaxial behavior of
the reinforcements), (2) the triaxial strength criterion of concrete is expressed as a function of three stress
invariants, (3) the non-associated plastic rate of deformation determines the volumetric flow direction of
concrete by a dilatancy angle which coincides in direct tension with the direction of uniaxial tension, (4)
crack induced strain-softening controls the reduction of the tensile strength by an isotropic decohesion
process monitored by constant fracture energy (the ductility of concrete failure under different stress
is accounted for by the number of fictitious cracks), and (5) degradation of concrete stiffness due to
cracking is captured by an isotropic elastic damage model.

The numerical simulation of a circular R/C slab supported by a circular column demonstrates that the
finite element model reproduces the punching failure mechanisms observed experimentally: the formation
of a flexural tangential crack over the column is followed by radial cracks and finally forms an inclined
punching shear crack inside the slab. Furthermore, the punching load is captured.

A closer look at the shear failure mechanisms reveals that: (1) localized shear failure is initiated by
the coalescence of micro-cracks inside the slab, followed by an inclined crack propagation, (2) shear failure
is caused by tensile concrete cracking along the inclined crack, and (3) analysis of the acoustic tensor
reveals that the compression-shear stress at the slab-column intersection is modified during loading and
approaches a state of pure shear stress responsible for tensile crack propagation at punching failure.

1 INTRODUCTION

Reinforced concrete slabs supported on columns
fail by punching-shear when the column suddenly
perforates the slab after forming a conical shear
plug. A review of this failure phenomenon has
been presented by Regan and Braestrup (1985).
The approach adopted here is based on finite
element simulation of this localized failure mech-
anism using a triaxial concrete formulation. The
plasticity formulation of concrete is a continuum
description of failure which is regularized by the
discrete idealization of reinforcing bars along el-
ement edges. The R/C finite element model cap-
tures strain localization and describes constant frac-
ture energy dissipation as described further on.
The first attempt to apply fracture mechan-
ics to punching failure was reported by De Borst
and Nauta (1985). Later Gonzdlez -Vidosa et al.
(1988) and Dyngeland et al. (1994) investigated

the capabilities of various material models to simu-
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late punching failure. However, the localized punch-
ing failure mechanism was never clearly captured.

More recently, Menétrey et al. (1997) proposed a

finite element model to simulate punching shear

which reproduced the localized mode of punching

failure. This model is detailed inr the following.

2 NUMERICAL MODEL

2.1  Preliminaries 3

At the constitutive level, the behavior of concrete
is described within the framework of the flow the-
ory of plasticity (see e.g. Chen (1982)). The non-
linear response of reinforcing steel and concrete is
treated separately assuming full bond conditions.
The steel behavior is characterized by a bilinear
stress-strain response which is the same in tension
and compression.
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Figure 1: Concrete failure criterion, plastic potential, plastic flow direction, and grey region in the

meridian plane

2.2 Concrete failure criterion

The triaxial criterion of concrete failure is a critical
ingredient to describe punching failure as proposed
by Moe (1961). The triaxial strength criterion de-
veloped by Menétrey and Willam (1995) is used
in order to reproduce punching shear failure. The
failure criterion is expressed in terms of the three
invariants &, p,6 (which correspond to the hydro-
static and deviatoric invariants and the polar an-
gle of the Haigh-Westergaard coordinates see e.g.
Chen (1982)) of the stress tensor o as:

P £ |
\/6](‘6 \/gfc

where f, denotes the uniaxial compressive strength.
Initially, the cohesion parameter is set to ¢ = 1,

r(0,e) + c=0,

el

and the friction parameter is ¢ = 3%‘2—61%1,
fi 1s the uniaxial tensile strength. The elliptic
function r(f, e) is based on the 5-parameter model

by Willam and Warnke (1974):

4(1 — e*)cos?§ + (2e — 1)
2(1 — €?)cosf + (2 — 1) DV/?’

r(f,e) = (2)

with D = 4(1 — €2) cos® 8 + 5 — 4e. The eccen-
tricity parameter e describes the out-of-roundness
of the deviatoric trace which is the limiting ratio
of the tensile meridian over the compressive merid-
ian:

whereby

868

0 =
e = limit(as p tends to O)pp( 0)

wo=m

Convexity and smoothness of the elliptic function
requires that 0.5 < e < 1. For ¢ > 0 one singular
apex is located at: € = (ev3f.)/é,p = 0. The
failure criterion is illustrated in the planes along
the tensile (§=0) and the compressive (6 = m/3)
meridians as well as the apex in Figure 1.

2.3 Concrete flow rule

The evolution of the plastic deformation is de-
scribed with a flow rule derived from the plastic
potential g such that:

Ae, = Aydg/do, (4)

where A~y is the plastic multiplier and 9 refers to
the partial derivative. The plastic potential which
was shown to appropriately simulate shear failure
is expressed as:

9(p,€) = p* + Bp + C¢. (5)

where parameters B and C' define the axisymmet-
ric shape.

The plastic flow direction is defined by the gra-
dient of the plastic potential:

Og 1 C
=9 24 BZ s + —
™= By ( i P)SH—\@

The gradient is a function of the deviatoric stress s

= dij. (6)
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Figure 2: Plastic flow direction in the deviatoric plane

and a constant volumetric stress component. The
parameters B and C are determined so that the
dilatancy of plastic strains observed in triaxial ex-
periments is reproduced. The following two condi-
tions are satisfied:
(1) for the uniaxial tension test, the flow direction
is fully aligned with the loading path of uniaxial
tension (this condition reproduces the elastic un-
loading in the radial direction observed experimen-
tally during uniaxial tension experiments on plain
concrete),
(2) for the uniaxial compression test, the flow di-
rection is described by the dilatancy angle 1. which
introduces a new material parameter. These two
conditions are graphically presented in Figure 1.

The first condition is satisfied if the slope of
the loading path for uniaxial tension (£/p = 1/+/2)
equals the flow direction at the point of ultimate
tensile strength (¢ = fi/v/3,p = /2/3f,0 = 0).
The slope of the flow direction is derived from
Equation 6 by introducing the invariants: ¢(m)
C and p(m) = 2p + B so that the first condition
gives

¢__C _1 0

p 20+B V2 (
This condition must be valid at the point of uni-
axial tensile strength, which leads to

2 1
Tt sP=C. (8)

The second condition states that at the point of
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ultimate compressive strength,

(€ = —£o/V/3,p = \[2[3£.,0 = 7/3), the flow di-
rection is specified by the dilatancy angle ¢.. This
second condition is expressed as tan, = £/p. In-
troducing the invariants of the flow rule leads to

2v2

V3

Combining Equations 8 and 9 results in

2(v2tan yof. — fi)
\/5(1/\/§ — tan 1/)5),

1 2

The parameter B must remain strictly positive
which implies that:

t ( i S
arctan ﬁfc \/Q. ~~

I
for f./f, = 10 this condition reads: 4° < ¢, <
35.30,

tan . f. + tan.B = C. (9)

B (10)

C (11)

35.3°, (12)

) < ). < arctan

The shape of the plastic potential is circular in
the deviatoric plane, which corresponds to a non-
associated flow rule except if e = 1. This assump-
tion illustrated in Figure 2 simplifies the formu-
lation and facilitates the stress computation. It
is neither in contradiction nor does it reproduce
experimental results, as very few are available for
validation.



The apex of the failure criterion results in a
grey region in the stress space where the stress
return algorithm is not defined. This grey region
is illustrated in Figure 1. It is delimited by the

condition
C  eV3f,
=

< 2
f_pB
If the trial overstress state is located in the grey
region, 1t is returned to the apex of the failure
criterion.

(13)

2.4 Concrete cracking

Concrete cracking is described by a smeared crack
model using strain-softening which enforces a grad-
ual decrease in tensile strength with increasing ten-
sile deformation. The fictitious crack model devel-
oped by Hillerborg et al. (1976) is considered in
which the tensile stress o, is directly controlled by
crack opening w. The amount of energy per unit
surface area absorbed in opening a crack from zero
to the crack rupture opening displacement w, is

Gf = /Wr atdw,
0

defines the fracture energy which is dissipated dur-
ing the tensile decohesion process and which con-
stitutes a basic fracture property.

The gradual decrease in tensile strength with
tensile deformation is controlled by an exponen-
tial degradation of the cohesion parameter fitting
tensile test data which dominates the post-peak
response of concrete

e exp{ } .

The cohesion parameter is uncoupled in the ex-
pression of the concrete failure criterion in Equa-
tion 1 resulting in an isotropic loss of strength due
to reduction of the cohesion. For ¢ = 1, the mate-
rial is intact and for ¢ = 0, the material is consid-
ered to have lost the entire cohesive strength and
thus exhibits only residual frictional shear strength
in compression.

The fracture energy must remain constant and
independent of the finite element size. Therefore,
the mapping between the crack opening displace-
ment w in the definition of the constant fracture
energy, and the tensile cracking strain e, used at
the constitutive level of the equivalent continuum
leads to the definition of a length scale related to
the finite element size h® normal to the crack di-
rection, so that w = h%¢, following the idea of the
crack band model by Bazant and Oh (1983) or the
composite damage model of Willam (1984). The
simulation of localized failure like punching shear
failure introduces this dependence on the finite el-

(14)

a.

fi

w
—5—
Wy

C =

(15)
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ement size which plays the role of a localization
limiter.

Punching failure is characterized by distinct
states of stress which exhibit very different ductil-
ity or rather brittleness. This difference in brit-
tleness is included in the model by considering
the number of micro-cracks formed in a specimen
following the experimental observations that ax-
ial splitting in compression as well as in shear re-
sults from coalescence of many micro-cracks. The
analytical formulation of the fictitious number of
cracks NV is derived based on the following experi-
mental observations:

1. uniaxial tension test:
(6 = fi/V/3,p = +/2/3f:,6 = 0) is character-
ized by one single crack,

. triaxial extension test:
(6 = V3f,,p = 0 = 0) is characterized by
one single crack,

. uniaxial compression test:

(6 = —f.//3,p = \/2/3f.,0 = 7/3) is char-
acterized by N cracks (introduced as a new
material parameter),

. biaxial compression test:

(€ = —2fic/V3,p = /2/3fses0 = 0) (fre
is the equi-biaxial compressive strength) is
characterized by one single crack.

It should be noted that for the simulation of
punching shear failure, the reproduction of the bi-
axial compressive state of stress is critical at the
corner of the slab-column intersection. The ana-
lytical expression of the fictitious number of cracks
includes the polar angle § in order to distinguish
between localized failure along the tensile merid-
ian and distributed failure along the compressive
meridian. The fictitious number of cracks is ex-
pressed in terms of the ratio £/p, so it remains
constant during proportional loading. The ficti-
tious number of cracks is written as follows for

%<1/\/§:

¢
P

N = V2(=2>+1/V2)(1 —cos §) (N, — 1) +1, (16)

and for % > 1/+/2 the numbey of cracks is N = 1.

The four observations mentioned earlier are repro-
duced as illustrated in Figure 3.

The combination of radial and tangential cracks
is accounted for in an average form by computing
the increment of crack opening Aw as the posi-
tive norm of the plastic strain [[(Ae€,)|| (being the
internal variable) where || - || denotes the norm
and () are the Macauley brackets which extract
positive components of the argument such that

() = 1/0.5(zi+ | @; |)z;. Consequently, the in-



crement of crack opening may be expressed as

dg ., 1
Aw = K AY|[{(Z3))| = 17
w=kAEDI,
where A is the plastic multiplier.

Stiffness degradation due to cracking is assumed
to occur only in the softening range of the re-
sponse. The elastic constitutive matrix is modified
in the form of equivalent degradation of Young's
modulus F, so that

E=cE,. (18)
For full tensile damage (c = 0) reduces Young's
modulus to zero. This model corresponds to a
unilateral scalar damage model and is necessary
to capture punching shear failure.

2.5  Numerical implementation

The stress integration algorithm is based on an
elastic-predictor, plastic-corrector strategy. The
elastic-predictor step and the plastic corrector step
are evaluated with the cutting-plane algorithm de-
veloped by Ortiz and Simo (1986). A relaxation
method is coupled with the cutting-plane algo-
rithm of plastic correction in order to avoid that
the stress point is returned accidentally inside the
elastic domain due to exponential decohesion.
Circular reinforced concrete slabs are consid-
ered which are modeled with four node quadrilat-
eral axisymmetric elements (quad-axi). The reg-
ularization parameter of the quad-axi (h°¢) which
appears in the softening formulation is the square
root of the cross section area so that the circumfer-
ential direction is not taken into account. This re-
sults in a constant crack spacing along the perime-
ter as observed in punching failure experiments.
Mesh locking occurs as a result from near in-
compressibility. For the developed concrete model,
the flow rule often permits only for little volume
changes under high confinement, so if plastic strains
become large, the response becomes nearly incom-
pressible. This difficulty is overcome by the treat-

ment of incompressibility developed by Hughes (1980)

using the mean-dilatation formulation.

The non-linear solution is advanced in incre-
mental load steps which require iterations. A mod-
ified Newton-Raphson algorithm is implemented
with a special strategy to capture localized failure.
Therefore:

o the predictor step is linear elastic in order to
facilitate unloading,

¢ the corrector iteration is elastic for a certain
number of converging iterations (norm of the
out-of-balance force is reducing) and only af-
ter these elastic iterations the corrector iter-
ation is switch to plastic,
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e however, the corrector iteration is changed
back to elastic as soon as divergence of the
norm of the out-of-balance force is detected.

The tensile damage of the elastic concrete stiff-
ness is assumed to remain constant during each
load step. The elastic modulus is updated accord-
ing to the state variables at the previously con-
verged equilibrium configuration (not at the pre-
vious iteration). This has the advantage that no
coupling between elastic degradation and plastic
softening has to be considered. However, fairly
small load steps are required because of the dis-
continuous changes of the elastic stiffness proper-
ties.

3 PUNCHING FAILURE MECHANISMS

3.1 Description of the test problem

The circular slab tested by Kinnunen and Nylan-
der (1960) reinforced with ring reinforcement (de-
noted by IB15a) is used for the numerical simu-
lation because of its axially symmetric geometry.
The slab has a total diameter of 1840 mm and a
thickness of 150 mm. Experimentally, the load is
applied to the column (150 mm in diameter) by
means of a hydraulic jack and transferred to the
floor by mean of tie rods along a radius of 855 mm.

The finite element mesh used for the simulation
is chosen such that the punching crack is eventu-
ally aligned with the mesh, but without predefin-
ing its orientation. The mesh is refined around the
corner of the slab-column intersection. The load is
applied by controlling the vertical displacement to
capture an eventual softening.

The concrete is characterized by a mean com-
pressive cylinder strength of f.=28 MPa. The ten-
sile strength is assumed to be f;=3 MPa. The
fracture energy—according to the CEB-FIP model
code (1990)—depends on the maximum aggregate
size (32 mm) and on the tensile strength so that
G=120 N-m/m?% The following parameters are
assumed: Young's modulus Fy=25000 MPa, Pois-
son’s ratio of ¥=0.2, number of cracks in compres-
sion Ny=10, and dilatancy angle at the ultimate
uniaxial compressive strength ), = 10°. The rein-
forcement is made of steel ribbed bars of 12 mm in
diameter which are characterizediby Young’s mod-
ulus of 210000 MPa and a uniaxial yield strength
of 450 MPa. The hardening modulus is assumed
to be 10000 MPa. The positions of the ring el-
ements are located at the nodes of the concrete
finite element mesh.

The predicted punching load agrees with the
experimental failure load, however the numerical
model predicts a stiffer response than the one mon-
itored experimentally. This is due to pauses dur-
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ing the load-controlled test without a closed-loop
feed-back systems resulting in horizontal branches
of the response curve.

3.2 Cracking phenomenon

The punching failure simulation reproduces the tan-
gential cracking phenomenon presented in Figure
4 for the last three load steps. In this Figure, the
tangential cracks are plotted if the principal strain
is larger than the rupture deformation in uniaxial
traction: f;/FEo. The tangential cracks are symbol-
ized at the Gauss point by straight lines for which
the length is computed based on the cohesion pa-
rameter ¢ and the size h*® of the finite element such
that:

crack length = 0.33°(1 — c). (19)

The crack orientation is perpendicular to the ma-
jor principal strain orientation. A stress-free crack
is symbolized by a thicker line and is shown if
¢ < 0.007 (corresponding to w > w,).

Figure 4 shows the response for a vertical dis-
placement of 3.1 mm corresponding to a stress-
free tangential flexural crack which has opened
through half the slab thickness. At that load,
the first inclined stress-free crack appears inside
the slab thickness, just below the reinforcement.
This shows that the punching crack is initiated
by micro-cracks coalescence at the top of the slab.
This coalescence has been observed experimentally
in the punching-shear tests of Regan (1983) who
reported that micro-cracks are formed across the
slab thickness before failure occurs. Along the
same line, Moe (1961) observed visually the for-
mation of inclined cracks across the slab thickness
before failure occurs. By increasing the vertical
displacement, this inclined crack expands toward
the corner of the slab-column intersection. Most of
the others inclined micro-cracks close at the same
timeg. At failure, the punching crack has reached
the corner of the slab-column intersection.

Consequently, punching failure is initiated by
micro-crack coalescence and followed by a tensile
crack propagation. The ACI Committee 446 (1992)
suggests that punching failure results only from a
single crack propagation; however, the proposed
direction of propagation is contrary to the one ob-
served here as the punching crack is initiated at
the top surface of the slab and propagates from
the upper part of the slab to the bottom surface.

Finally, it may be observed that the punching
crack orientation is very close to the experimental
one except at the top of the slab.

3.3 Sensitivity analysis

First, the influence of the concrete’s uniaxial ten-
sile strength was investigated by simulating slabs

with different tensile strengths (f;=2.1, 3, and 3.9
MPa). The crack mechanisms are the same but the
response curves are distinct. The behavior of the
slab is stiffer for a high value of tensile strength.
The load at which the first stress-free tangential
flexural crack initiates increases with increasing
tensile strength. Once the tangential flexural crack
has formed, the slope of the load-deflection re-
sponse is similar for all slabs. The failure load at
which failure occurs increases with raising tensile
strength.

The uniaxial concrete compressive strength does
not influence the punching failure. Neither the
cracking mechanism nor the response curve are
modified for slabs with different uniaxial compres-
sive strengths: f,=22.5, 28.1, and 33.7 MPa (while
the tensile strength is held constant). It can be
concluded that the punching failure is due to ten-
sile failure of concrete along the inclined punching
crack, and it is not due to compressive failure of
concrete. The influence of the tensile strength was
already suggested by Moe (1961) who mentioned
that the punching failure is very often of a splitting
type, and it is comparable to the type of failure
observed in specimens subjected to tension. Al-
though the tensile and compressive strengths are
known to be interrelated, the parametric study
considered them to be independent of each other.

The influence of concrete fracture energy was
investigated showing that it does not influence the
stiffness but it influences the ductility as the max-
imum displacement increases with increasing frac-
ture energy. The number of cracks in uniaxial com-
pression, the out-of-roundness parameter and the
dilatancy angle at the uniaxial ultimate compres-
sive strength have little influence on the cracking
mechanism and the response curve.

3.4 Size-effect in punching-shear

The size-effect was investigated by simulating four
slabs of different sizes but with a similar scaling
factor which applies to the concf}ete geometry and
the steel area. Except for these dimensions, the
slabs have the same boundary conditions and ma-
terial characteristics. The finite element mesh is
refined for large structures to avoid unstable re-
sponse as the softening slope is controlled by the
finite element size. ¥
The nominal shear stress is computed as

Pfailure
T = -2 20
m(2rs + d)d’ (20)
where the radius of the column is denoted by r,
and d is the slab effective depth. It is observed that
the nominal shear stress decreases with increasing
slab thickness illustrating size-effect.
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Assuming constant fracture energy, Bazant (1984) This condition also signals loss of ellipticity be-

derived a size-effect law which was shown to de-
scribe the size-effect in punching failure by Bazant
and Cao (1987). This law is adjusted here to fit the
four slab simulations (without having the experi-
mental scatter) by linear regression which gives

T = 155 f,(1 + d/34)71/2, (21)

where f; is the uniaxial tensile strength of concrete.
This size-effect law for punching shear is charac-
terized by two asymptotes: a horizontal branch
(strength criterion) and an inclined branch (linear
elastic fracture mechanic), whereby standard slabs
fall into the transition region, where size-effects
might become important.

3.5 Localization analysis

The formation of weak discontinuities (weak dis-
continuities indicate the formation of jumps in the
strain fields, whereas strong discontinuities result
in jumps not only in the strain but also in the dis-
placement field as distinguished by Willam et al.
(1994)) such as cracking in concrete can be moni-
tored with the localization condition described by
Rice (1976), Ortiz et al. (1987) and Rudnicki and
Rice (1975). This localization condition in elastic-
plastic material across a shear band normal to the
direction NN is characterized by the acoustic tensor

Q.,= ND,,N, (22)

which is obtained by contracting the tangential
material law D, with the critical normal direc-
tion IN of the discontinuity. The damaged elastic-
plastic constitutive matrix is an extension of the
elastic-plastic tangent operator:

(D“m)(D"n)T

D, = D" —
i —%h—k nTD"m’

(23)

where D™ denotes the damaged elastic constitu-
tive matrix at load step n. The damaged elastic
degradation is evaluated at the previous converged
load step and not at the previous iteration is con-
sidered. This results in a damaged elastic consti-
tutive matrix which is constant during each load
step. This has the advantage that no coupling be-
tween elastic degradation and plastic softening has
to be considered for the computation of the dam-
aged elastic-plastic constitutive matrix.

For localization to occur along a discontinuity
normal to the direction IV, the acoustic tensor Q,,
must be singular. It has to have at least one zero
eigenvalue which corresponds to the localization

condition
det(Q,,) = 0. (24)

cause it corresponds to the change of the static
equilibrium equations from elliptic to hyperbolic
partial differential equations. For the 2-D case,
the normal to a discontinuity is defined as:

cos
N:(sina). (25)
0

Following the work presented by Ortiz et al. (1987)
the determinant of the acoustic matrix expands
for non-symmetric elastic-plastic material behav-
ior to:
det(Q,,) = aosin*a+ a;sin®acosa+
aysin? acos? a + azsin a cos® o +
aycos* @, (26)

where:

a0 = DEDY - DSD;

a = DEDE+ DgﬁD — DY DR — DD

ay; = DJEDS+ DEDE + DIDE — DE DY
—-D{ D3 — DD

az = D{D35+ DiiDs; — DisD5Y — Dy D5y

ay = D{D3— DiDs]

and D;} are the component of the elastic-plastic
constitutive matrix. The determinant of the acous-
tic tensor is an explicit function of the angle a.
The critical orientation for which the determinant
of the acoustic tensor is minimal is determined nu-
merically. For graphical representation, the value
of the determinant of the acoustic tensor is nor-
malized by the determinant of the acoustic tensor
of isotropic elasticity:

det Q@ = u(X + 2u). (27)

In this case, the determinant of the elastic acous-
tic tensor is independent of $he orientation of the
discontinuity.

The acoustic tensor is analyzed at the corner of
the slab-column. In Figure 5, the normalized ratio
of the determinant of the acoustic tensor is plotted
versus the angle « for two Ioad steps: before failure
and at failure.

It is observed that before fallure, the determi-
nant of the acoustic tensor exhibits two minimum
values for the inclinations: @=80° and 152°. This
distribution is comparable to the one reported by
Willam et al. (1997) for the simple shear test,
which corresponds to formation of two slip planes
due to loss of frictional resistance. However, fol-
lowing a non-proportional loading due to internal
cracking and stresses distribution, the distribution
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Figure 5: Evolution of the acoustic tensor at the slab-column corner for a circular slab with ring rein-

forcement

of the acoustic tensor at failure is characterized
by a region 90° < « < 150° where det Q,, is mini-
mal. The average value of this region reads a=120°
which matches the inclination of the punching-
shear crack. At failure, the distribution of the
acoustic tensor approaches the one reported by
Willam et al. (1997) for pure shear (loss of co-
hesion). Therefore, this indicates that punching-
shear failure at that particular point of the slab,
reproduces a pure shear state of stress, which cor-
responds to the formation of a tensile crack.

4 CONCLUSION

The proposed finite element model reproduces shear
failure in reinforced concrete and allows to simu-

late punching-shear failure in circular slabs rein-

forced with ring reinforcement. The comparison

with experimental results reveal that the mode of

failure, characterized by a localized inclined punch-

ing crack, is properly captured. A closer look at

the failure mechanisms shows that:

1. the punching crack is initiated by coalescence
of micro-cracks inside the slab followed by
crack propagation towards the corner of the
slab-column,

2. the punching failure is caused by tensile con-
crete cracking along the inclined punching
crack and is not the result of compressive
failure of concrete,

3. the analysis of the acoustic tensor reveals
that the compression-shear stress at the slab-
column intersection is modified during the
punching failure process and approaches a

state of pure shear stress responsible for ten-
sile crack propagation.
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